Part Number Hot Search : 
SR804 00159 MAP3006 I7511N 1N3573 FR155G D4101 ICM7226
Product Description
Full Text Search
 

To Download IRF7805ZPBF-1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet notes   through  are on page 10 top view 8 12 3 4 5 6 7 d d d d g s a s s a so-8 applications high frequency point-of-load synchronous buck converter for applications in networking & computing systems. absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 70c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t a = 25c power dissipation  w p d @t a = 70c power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range thermal resistance parameter typ. max. units r jl junction-to-drain lead  CCC 20 c/w r ja junction-to-ambient  CCC 50 max. 1612 120 20 30 -55 to + 150 2.5 0.02 1.6 
 features benefits industry-standard pinout so-8 package ? multi-vendor compatibility compatible with existing surface mount techniques easier manufacturing rohs compliant, halogen-free environmentally friendlier msl1, industrial qualification increased reliability form quantity tube/bulk 95 IRF7805ZPBF-1 tape and reel 4000 irf7805ztrpbf-1 package type standard pack orderable part number IRF7805ZPBF-1 so-8 base part number v ds 30 v r ds(on) max (@v gs = 10v) 6.8 q g (typical) 18 nc i d (@t a = 25c) 16 a m   
  
       
  !  downloaded from: http:///

  
  
       
  !  static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / t j breakdown voltage temp. coefficient CCC 0.023 CCC v/c r ds(on) static drain-to-source on-resistance CCC 5.5 6.8 m CCC 7.0 8.7 v gs(th) gate threshold voltage 1.35 CCC 2.25 v v gs(th) gate threshold voltage coefficient CCC - 4.7 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 64 CCC CCC s q g total gate charge CCC 18 27 q gs1 pre-vth gate-to-source charge CCC 4.7 CCC q gs2 post-vth gate-to-source charge CCC 1.6 CCC nc q gd gate-to-drain charge CCC 6.2 CCC q godr gate charge overdrive CCC 5.5 CCC see fig. 16 q sw switch charge (q gs2 + q gd ) CCC 7.8 CCC q oss output charge CCC 10 CCC nc r g gate resistance CCC 1.0 2.1 t d(on) turn-on delay time CCC 11 CCC t r rise time CCC 10 CCC t d(off) turn-off delay time CCC 14 CCC ns t f fall time CCC 3.7 CCC c iss input capacitance CCC 2080 CCC c oss output capacitance CCC 480 CCC pf c rss reverse transfer capacitance CCC 220 CCC avalanche characteristics parameter units e as single pulse avalanche energy mj i ar avalanche current  a diode characteristics parameter min. typ. max. units i s continuous source current CCC CCC 3.1 (body diode) a i sm pulsed source current CCC CCC 120 (body diode)  v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 29 44 ns q rr reverse recovery charge CCC 20 30 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) conditions max. 7212 ? = 1.0mhz conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 16a  mosfet symbol v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v  i d = 12a v ds = 15v v gs = 20v v gs = -20v v ds = 24v, v gs = 0v t j = 25c, i f = 12a, v dd = 15v di/dt = 100a/ s  t j = 25c, i s = 12a, v gs = 0v  showing the integral reverse p-n junction diode. v gs = 4.5v, i d = 13a  v gs = 4.5v typ. CCC v ds = v gs , i d = 250 a clamped inductive load v ds = 15v, i d = 12a v ds = 24v, v gs = 0v, t j = 125c CCC i d = 12a v gs = 0v v ds = 15v downloaded from: http:///

   
  
       
  !  fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 2.5 3.0 3.5 4.0 4.5 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 15v 20 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 16a v gs = 10v 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20 s pulse width tj = 25c "  


  
  
 
  

0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 20 s pulse width tj = 150c "  


  
  
 
  

downloaded from: http:///

 #  
  
       
  !  fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1 02 03 04 0 q g total gate charge (nc) 0 2 4 6 8 10 12 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v vds= 15v i d = 12a 0.2 0.4 0.6 0.8 1.0 1.2 v sd , source-todrain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v 1.0 10.0 100.0 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec downloaded from: http:///

 $  
  
       
  !  fig 11. maximum effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature 25 50 75 100 125 150 t j , junction temperature (c) 0 4 8 12 16 i d , d r a i n c u r r e n t ( a ) -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250 a 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 1.081 0.00043712.880 0.213428 24.191 2.335 11.862 52 downloaded from: http:///

 %  
  
       
  !  fig 13c. maximum avalanche energy vs. drain current 25 50 75 100 125 150 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 6.0a 6.9a bottom 12a fig 14a. switching time test circuit fig 14b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1 s duty factor < 0.1% v dd v ds l d d.u.t + - fig 13b. unclamped inductive waveforms fig 13a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 12. on-resistance vs. gate voltage 2.0 4.0 6.0 8.0 10.0 v gs , gate-to-source voltage (v) 0.00 0.01 0.02 0.03 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ) t j = 25c t j = 125c downloaded from: http:///

 &  
  
       
  !  d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 16. gate charge test circuit fig 15. 
  

  for n-channel hexfet   power mosfets   ? !"  ? #  ? ! $% "   &'  p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period  "  '$"
(
) (     + - + + + - - -      " (( ? )*## +,  ? () ' - ( .  ? "  ## +(/0(0 ? ( .  1( ) .     fig 17. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///

 *  
  
       
  !  control fet 
  





 
  

  
  





 
  





 

 
  

!"# 

  
$

% 

 &'!"#


  


$
  
 



  



 
 


 $( p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) ( ) + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? #
 

) 
  


   
 




 
&'!"#
 
   



 

  
   


  


&'!"#
 
  #
   

   

  
 


  
 

 
  



  !
*  
  





 
$ 
 

 




   



 




 


+ 





 
  

 
& , 
 


 
 
  
  


  






 


  
  


&'!"#
 
$
   
$ 
!
-
 
 
 

 
$
  
   


 
 
.   /
   0

 


  
$ 
 
 $
 

  synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:///

 +  
  
       
  !  so-8 package outlinedimensions are shown in millimeters (inches) so-8 part marking e1 de y b aa1 h k l .189 .1497 0 .013 .050 basic .0532 .0040 .2284 .0099 .016 .1968 .1574 8 .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0 1.27 bas ic 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 mi n max millimeters inches min max dim 8 e c .0075 .0098 0.19 0.25 .025 basic 0.635 basic 87 5 65 d b e a e 6x h 0.25 [.010] a 6 7 k x 45 8x l 8x c y 0.25 [.010] cab e1 a a1 8x b c 0.10 [.004] 4 3 12 f oot p r i nt 8x 0.72 [.028] 6.46 [.255] 3x 1.27 [.050] 4. ou t l i ne conf or ms t o j e de c ou t l i ne ms - 012 aa. not e s : 1. dimens ioning & tolerancing per asme y14.5m-1994. 2. cont rol l ing dime ns ion: mil l ime t e r 3. dime ns ions are s hown in mil l ime t e rs [inche s ]. 5 dime ns ion doe s not incl u de mol d pr ot ru s ions . 6 dime ns ion doe s not incl u de mol d pr ot ru s ions . mold protrus ions not to exceed 0.25 [.010]. 7 dimens ion is t he lengt h of lead for soldering to a s ubst rat e. mold protrus ions not to exceed 0.15 [.006]. 8x 1.78 [.070] dat e code (yww) xxxx international rectifier logo f 7101 y = last digit of the year part number lot code ww = week e xample: t his is an irf7101 (mos f et ) p = de s i gnat e s l e ad- f r e e product (optional) a = assembly site code note: for the most current drawing please refer to ir website at: http://www.irf.com/package/ downloaded from: http:///

   
  
       
  !  
  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.94mh, r g = 25 , i as = 12a.   pulse width 400 s; duty cycle 2%.   when mounted on 1 inch square copper board     , 2 --
. /+ 01 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) notes: 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters(inches). 3. outline conforms to eia-481 & eia-541. so-8 tape and reel (dimensions are shown in millimeters (inches)) note: for the most current drawing please refer to ir website at: http://www.irf.com/package/ ? qualification standards can be found at international rectifiers web site: http://www.irf.com/product-info/reliability ?? applicable version of jedec standard at the time of product release ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ ms l 1 (per je de c j-s td-020d ?? ) rohs c ompliant yes qualification information ? qualification level industrial (per jedec jes d47f ?? guidelines) moisture sensitivity level so-8 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF7805ZPBF-1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X